منابع مشابه
Schläfli numbers and reduction formula
We define so-called poset-polynomials of a graded poset and use it to give an explicit and general description of the combinatorial numbers in Schläfli’s (combinatorial) reduction formula. For simplicial and simple polytopes these combinatorial numbers can be written as functions of the numbers of faces of the polytope and the tangent numbers. We use the constructed formulas to determine the vo...
متن کاملHolomorphic quantization formula in singular reduction
We show that the holomorphic Morse inequalities proved by Tian and the author [TZ1, 2] are in effect equalities by refining the analytic arguments in [TZ1, 2]. §0. Introduction and the statement of main results Let (M,ω, J) be a compact Kähler manifold with the Kähler form ω and the complex structure J . Let g denote the corresponding Kähler metric. We make the assumption that there exists a He...
متن کاملThe Schläfli Formula in Einstein Manifolds with Boundary
We give a smooth analogue of the classical Schläfli formula, relating the variation of the volume bounded by a hypersurface moving in a general Einstein manifold and the integral of the variation of the mean curvature. We extend it to variations of the metric in a Riemannian Einstein manifold with boundary, and apply it to Einstein cone-manifolds, to isometric deformations of Euclidean hypersur...
متن کاملMorse’s index formula in VMO for compact manifolds with boundary
In this paper, we study Vanishing Mean Oscillation vector fields on a compact manifold with boundary. Inspired by the work of Brezis and Niremberg, we construct a topological invariant — the index — for such fields, and establish the analogue of Morse’s formula. As a consequence, we characterize the set of boundary data which can be extended to nowhere vanishing VMO vector fields. Finally, we s...
متن کاملA remark on Krein’s resolvent formula and boundary conditions
We prove an analog of Krein’s resolvent formula expressing the resolvents of self-adjoint extensions in terms of boundary conditions. Applications to quantum graphs and systems with point interactions are discussed. AMS classification scheme numbers: 46N50, 47A06, 47A10 PACS numbers: 02.30.Tb, 02.60.Lj Krein’s resolvent formula [1] is a powerful tool in the spectral analysis of self-adjoint ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2002
ISSN: 0305-4470
DOI: 10.1088/0305-4470/35/44/304